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ABSTRACT

A plan of successive approximations is outlined for handling theequations of the three-dimensional problem in elasticity for shells of

revolution with regions of rapidly varying thickness along the conceptual
lines of a technique proposed by 0. G~hner. Attention is confined to
essentially cylindrical shells with regions of rapidly varying thickness,
e.g., circumferential notches or grooves. For a restricted but useful
class of loadings, plane biharmonic stress functions can be utilized. The
first two orders of theory are explicitly formulated in the framework of
analytic functions of a complex variable.
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I. INTRODUCTION

Occasionally, the need arisee for the analysis of moderately thick
shells with rapidly varying wall 1hickness. Local stress concentration
becomes the pribhary concern in certain eases rather than the averaged
behavior approximated by conventional thin shell analysis. Clearly the
determination of such information requires a careful consideration of the
equations of thrie-dimensional elasticity theory.

In this repcrt, we initially consider the class of moderately thick
shells of revolution under axially symmetric loadings, i.e., the deformation
will be axially symmetric. The local effects of geometrical irregularities
in the wall thickness (e.g., circumferential grooves or nodes) will be of
principal concern. Although the corresponding problem class in three-
dimensional elasticity is well-known, for example Reference 1, exact
solutions in general are extremely difficult to obtain. The plan of analysis
therefore consists in utilizing the relative thinness of the shell to
systematically approximate the three-dimensional equations.

A plan of successive approximations, conceptually due to 0. G8hner,
is adopted. The choice of the order of approximation is obviously sensitive
to the loadings considered. A particular choice is considered in this
report leading to a structure permitting the use of plane biharmonio
functions.

It is shown that this plan is suitable for handling a restricted but
useful class of loadings of cylindrical shells with rapidly varying thick-
ness. In particular, the zero'th order solution supports Neuber's assertion8

that when the shell is very thin for a class of applied loadings the problem
can be considered as one of plane strain. The first two orders of solution
can be explicitly formulated in the framework of analytic functions of a
complex variable.

II. FORMULATION IN TERMS OF SUCCESSIVE APPROXIMATIONS

For the problem class of axially symmetric deformation, it will be
convenient initially to review the formulation in terms of cylindrical
coordinates (r, e, z) where z is the axis of revolution. Assuming no body
forces, it is well-known, e.g., Reference 1, that the equations of equilibrium
are

rr +rs + (0r - o")/r - 0

"r rt +÷ 0s, + rrs/r . 0

where an independent variable appearing as a subscript and following a
0coma denotes partial differentiation with respect to that variable. The
compatibility equations for this case are
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Vla- 2(o- )/rI ÷ fl, 1 /(l ÷ v) 0 0,

V *o +(o - '9 )/rs' + nr/r(l + v) - o,

V2. fl.,l/(i * + V) a 0,

VS%, - Irr/rt + fl,,"/(( + v) - 0;

where

V2 B3/ar 3 ÷ (/r)2/r + /

l - ( + ( + o's)/(1 l V),

and Y denotes Poisson's ratio.

The systems (1) and (2) can be replaced by a formulation in term of
a single stress function, 0, as proposed by Love, 4 by defining

0 " [CV'Zk4 - I

(3)
0, [(2 - v)V'4 -

%. - [(l - ,O)v• - o,..]o

where

0.

(In (3), subscript notation denotes partial differentation of the stress
function 46(r, z).)

Let us now introduce the new coordinates f, 77 defined by

ifor-R, '7-z, (4)

where R is an appropriately chosen fixed radius of the shell. For the
present problem class, i.e., cylinders of variable thickness, we consider
R as independent of r and z. The previous systems can now be considered
in terms of the C, 77 coordinates. For example, the equations of equili-
brium and compatibility have the forms

o-, * r +,,,, * (o' - o +)/(" * R) 0 o,, (1')
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Am' I +Oa,1/(f + R) - +(o• " -o()/(e' + V) *l, 1 /(i * ') 0o, (ii

where

GBhner's plan of successive approximations depends on the validity of
thq expressions

11(f + R) - (1/R) F. (- f/R)O,

(s)
11/(f + )' - (1/H)' 1 (n+l)(- f/R)'.

&so

We shall henceforth confine our attention to regions where the expansions
(5) can be considered valid. Thus, the expansions (5) will be considered
in (1') and (2') and a plan of successive approximations to the system
will be defined. In particular, if o is the generic symbol for the
stresses, it is assumed that

Sao

where the superscript denotes the order of the approximation.

In the method of successive approximations, the plan of approximation
is clearly not unique. Furthermore, a rigorous assessment of the validity
of any given plan is generally unfeasible. On the other hand, several
minimal requirements are obvious. The plan should lead to a systematic
satisfaction of equilibrium and compatibility at least in an asymptotic
sense. Furthermore, each order of solution should correspond to a well-
defined mathematical system of equations. Finally, a reasonably accurate
approximation of the prescribed load conditions should be possible.

We propose the following particular plan of successive approximation:
For the n'th order approximation with leading components o11), terms con-
taming f2/R2+1 explicitly in (J') and (-2') will be neglected. Thus, the
sero'th order approximation corresponds to the system

to) (O) a O, t0 o)
0"?,• C 1?,. 71 + 0,17 " O

1 (0) 
to•7)o (0e e + f4 +, o, j ., *

a + f;//(I + 0) &,:,:, + n ,o/(, * ,) o.
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For n - 1, the corresponding system is

.'' I1 (0) lei
o',+ ,. , (al - al )/R - 0,

(8)
+++, + +,,+ +¢n/R 0'O

etc.

The plan can be conveniently summarized in terms of stress functions.
Guided by the structure of the stress function (3), it is a straightforward
matter to determine a system of stress functions compatible with the pre-
.eding plan of successive approximation. In fact, the n'th order approxima-
tion can be replaced by

2,. W al lo-.l

( - Fe + (v/R) ( F; ( /
(al ri jail n

(9)

U. " l - iF" 1  Fie + (a - (- .1 l(

(a), r.im) (AFma ' (tJ-ll + rn- 1'lopj

n * 0,, 2,...

where F + (2,i) * 0 if I<0 and

(ll rn-I (*-j-al iW + ( (aR) . F g - /R)(- /

3 r-U (r-IU) I ol (n13

-(1/ (i+l)rFte (4/) 1/R ) ( i(-'/R) " O,

n a 0,1,2, ....

The plan of approximation is not yet complete. Although a procedure
has been invented for the systematic consideration of equilibrium and
compatibility, there is no assurance that each system is well-defined and
that reasonable approximation of the applied loads can be realised. In
order to study the complete structure of each system, it is necessary to
consider the matter of boundary conditions to be imposed on the individual
systems. Therefore the applied load or possible systematic approximations
of the applied load must be investigated.
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III. THE ZBRO'TH ORDER THEORY

For n 0 0, (9) and (10) yield

le (a) to
a* 4' % +0

to) ) ,e e 'a, *I.'IO +0. f

where

4.,
AAF .0. (12)

Although this system is apparently consistent with the well-known problem
of plane strain, such a conclusion cannot be immediately arrived at with-
out further consideration of the applied load conditions.

In Figure 1, the force resultants T ds and T ds per unit of ciroum-
ference acting on the arc ds is shown where it is assumed that the force
is exerted by the material to the left on the material to the right pro-
oeeding from A' to B'.

A'

ds T, de

N

TB' ds

7F
FIGURE I.



From equilibrium,
STn a a. sinS + r'• COSA - -a, df/do + -r•. d•j/de, (13)

STj - a, cos• + Ten sinS - al• dn/ds In 9'td/ds. (14)

We now define as an additional part of our plan of successive
approximations,

T (iJ) U
a! T, (in)

where
la Eal taP

T * -a d7/ds + T dt7/ds, n o 0, 1,2,...
Pu Cal(16)

j -f d?/ds - Ten de/ds, n 0, 1,2...,

Thus,
T F-("dildsl (17)Tn d Flen/ds -(i - V) 1A 'df/ds - Med•F8] (7

To +[01 - vAtFI']/ds. (18)

Consider now the resultant forces, R and R acting on the surface
generated by the arc AB'. R vanishes by symmetry, whereas

R,9" 2v PR+f)Tn ds. (19)

If the arc A'B' is a closed contour with respect to the h-plane, then R, I
should vanish as B' coincides with A' from a consideration of equilibrium.
If T is approximated by T161 and substituted in (19), it is easily shown
that R does not vanish in general for a closed circuit. It is therefore
clear that a meaningful definition of R must be given to each order of
theory allowing for the order of approximation to the equilibrium state.
A similar argument can be made for the displacements and the resultant
moments.

A well-defined zero'th order theory will now be considered. We
assume the stresses of the zero'th order theory are defined by (11) and
(12). The function Flti1 (f,7) and its fourth order partial derivatives are
therefore assumed to exist at all interior points of the region described
in the fiýplane. Consider

Pn " T(S) ds, (a0)

S~-8-



Ik

Pi 1 do, (21)wher T161 and

where and Te are defined by (17) and (18). For any closed ocontour
SAD' (b~unding a simply connected region of the material in the C'i-plane),
pIE) and P" vanish due to the continuity of Fl" and its third order
partial derivatives. Thus, (11) and (12) coupled with (17) and (18) imply
a system of applied loads whose resultant force vanishes from a plane point
of view. A similar result follows when the resultant moment of the applied
load is considered.

It has thus been shown that for the plan of successive approximation
outlified above, the zero'th order approximation implies a system of applie4
loads which is self-equilibrating in the plane sense. It would be in-
consistent therefore to attempt to use this particular plan of approximation
for loading systems which violate this condition to the first order, e.g.,
internal pressure acting on a cylindrical shell. Therefore, we henceforth
restrict the class of applied loads to those which are self-equilibrating
in the plane sense to the first order.

Several details are still necessary to correlate the zero'th order
theory with the original three-dimensional problem. The force resultant
R, defined by (19) will now be considered as

R -o e R . (22)

Therefore, a compatible definition of R1,61 with the zero'th order theory i1

° n' 2 7 , T,3 ds. (23)

Finally, we assume the radial and axial displacement components u and
w can be expressed as

u- u ,W w .(4)

It will be recalled that for the sero'th order theory,

11) lei to)a O " V ( 17 9 + 0 11 ) . ( •

Therefore, from Hooke's law and the well-known strain-displacement relations
in cylindrical coordinates,



ifin

I

I . to! /(0)1

whore I is Young's modulus and ) - E/2(1 ÷ v). Thus,

0"3u1°/1 . -FPeen

Apart from rigid body motions,
te ele

2G u -Ffn
(28)tellO leP

2Gw . + F(CC,-- .

IV. THE RDER OF THEORY, n - 1

For orders of theory n)_l, the stress functions Fm 17,•) are no lge
plane biharmonio in general. On the other hand, the application of plane
biharmonic functions can be preserved provided a particular integral of (10)
is found for each order of theory. In general, the determination of the I
particular integrals requires a knowledge of the preceding orders of
solution.

Fortunately, the particular integral for the order n a 1 cn be found
directly. In fact, for n- 1, j-f/R)F1F'/2 is an integral of (10). There-
fore, the function G111 (f,iy) is defined as

-i G .F /2R. (29)
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Then,

W1 -- -(ll - ll - 71 12R + 0 I/ I II

/R -,, /P4R . i1

and

A& Gal 0 . (31)

The corresponding stress resultants are

Ill (1ll
T tl f i Ilde/do + •Til dlT/de

d~~j,1 /do (ld W ' jdl(2

•- • aR- m

Ill. -r Ill 'lq' (30)8

-T 7) /2R -(' Feifo M (I'Idq2Rs

Tjl o -1l d•7/ds - T',,€ de/de

Iinrl ! l2 ]/d8 let

"d- 1411 -VW, ]/do - fAj /2R (33)
lIt

An interesting mathematidal dilemma occurs from a consideration of the

determinano¥ of the solution. In general, a logical definition of TIll and
T•ill) would lead to a plane self-equilibrating set of preosribed loadl. Fporol , if Tell) : T and TIO a T on the boundary, the natural choice

for the boundary ooniitions for tie order of theory n a 1 would beTIl - 'Till - 0 which corresponds, of course, to a plans slf-equilibrating
ssteAn oi applied loads. On the other hand, it if a nimple matter to thow

that in general T.Ill and TI11 as defined by (%2) and (33) are not self-equilibrating in o he plane renses llthough the portions of (32) and (33)
involving G1le1(aq) correpond to a pelf-equilbrating load eysore in the
planf tones by aryumonts similar to those of teotion 3, it wan ouild be

sihown that the remaining portions involving the sronth order aolution in

general violate the conditions of plane equilibrium. Since the flexibility
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of the solution rests in the determination of GIlI(,1 1 ), clearly from a
precise standpoint, 0iI(f,n) is indeterminate.

The difficulty described above is common to most procedures which
depend on systematic approximation of a system. The dilemma can be by-
passed by introducing an additional approximation. If Gif!(f,i1) is de-
termined on the basis of ensuring prescribed loads over a portion of the
boundy only, in many practical problems it can be argued that sufficient
accuracy of solution in these regions is assured if the remaining portions
of the boundary are handled in only an average sense.

To illustrate the argument above, we consider edge loading of the shell
with load-free conditions on the lateral surfaces. It is a straightforward
matter to show that Til + (f/R)T÷' and Til + (f/R)Tii correspond toIplane self-equilibratng load syslems. On the lateral surfaces of the shell
Till and T 18 vanish, and the conditions on G(1l (f,71) on the lateral
s~i•faces can be found from (52) and (33). On the ends, Gat! (C,71) can be
adjusted to satisfy the edge loading in an average sense. By appealing
to Saint Venant's principle,, this approx4mat:ion should still yield a
reliable estlimate of' tle- lbeai: behavio intihe regions of rapidly varying
thiakness piviiiladi these r4egibns are sutficiently removed from the edges.

The a-i~l f6rdoe i esultantV R1 IH11 consistent" with (22) for this order
t••bry' i dh fiked! as:

t il l r ' T 1 1 ' + I)ds .
R 27YR f,/R)T,']ds1,1'

This dbfinition of R_ , in addition to being consistent in form with our
plan of successive approximation, enjoys the property of defining the same
total resultant axial force independent of the cross section chosen. This
last property requires that (34) be independent of path when considered a
line integral. It is a straightforward, matter to show.ý that (34) meets
these requirements.

The corresponding displacements uI'lIl andi wil') can be carried out in a
direct manner; however, the details will not be included here.

V. REMARKS ON ORDERS OF THEORY, n>l

For n)l, the approximations can be analyzed in a manner similar to
Sections III and IV. Again the problem for each order can be resolved into
the determination of a biharmonic stress function along with a particular
solution of (10) in terms of the preceding orders of solution. The deter-
mination of the particular solutions becomes increasingly difficult with1
Increasing n. For example, for n a 2 the particular solution requires a
solution, of the Poisson type differential equation with a righthand side
proportional to PIS)

-12.-'



The indeterminanoy of each of the higher orders of solution resembles
the case n - 1. Thus, the plan of enforcing boundary conditions only in
the net sense over a portion of the boundary is aain necessary in general.

VI. FORMULATION IN TIPIS OF CO MX VARIABLES

Formulation of the stress functions in terms of analytic functions of
a complex variable will now be carried out to enable use of some of the
elegant techniques invented for plane problems. Since a departure from the
Airy stress function is made, some modification of the conventional complex
variable representation will be required. The two orders of solution,
n - 0 and n - 1, will now be formulated in terms of the complex variable,

The biharmonic functions F1 il(f,¶7) and Gill(f,i1) defined in the pre-
ceding sections can be represented as

P 1 IM T fO.. (C)dt + f'o1  (C)ddl, (35)

G1 7(,,) - Im It fh1'l1(C dt + f 4l (C)dd, (36)

where q(s) (C) and 0121 (C) are analytic functions of C, "Im" denotes the
imaginary part of the bracketed expression, and bars denote the complex
conjugates. Equations 11 and 35 yield the relations

+ +I0"*' " [(O' *o

(@1 r (10 (0P

*iL T ,rO i) + (1(/2) 0 o+w ('5)

(38)
+ - 4v) (1 t + / ( 2v)(0 - f /R

7 1'(0.1 + 0. 1 " ( l + V)/R.



Curvilinear coordinates can now be introduced by introduoig appropriate
oonformal mapping functions of a complex variable. Consider an auxiliary
omplex plane, the V-plane, where y e ( iS. Let

denote a conformal mapping of a convenient region in the y-plane into the
region under consideration in the C-plane. Then the analyticity of •"'(C)
and 01 (M) is preserved when considered as functions of y due to the
analytioity of w(y). The argument is well-known in the conventional complex
variable formulation and the general details will not be reproduced here.

For reference we shall list several of the more useful relations. If
on the arc A'B', we denote

d, a ,doe doe (40)

then,

Ila) + 1o ei (-0 016+ -Ca C i s Mo Isi )),
* T? Cw C ?i ) C + Vccci

Ill -1ia 3 -l ,e) + a- ( 41)

Tl + -e - ) _e I + +

(6)iOP-L (0) too* .101 (0l
T,+ + T I +- I T? )/4R - e (C i +* ) + Ot +6 + )/4R

+ a)I(T O l , o ) - ,, -le , + ,q 1 oD .1/2, (42
CI C

R _M R• ((l - V)( t t) + *# /aI, (43)

llii4 u~b ! - l! Ii ll l|i '

R17 -27YR R4.j4(i - + *q

( - CI- I l OPI 101.(17/2) R't2(3 -4)f 4 i)dt - 4(l - Y)CO Ii- 2(l - vrle

+ - .+)(C€ + M)}+ (4A)

2G(u I w' ) . (3 4v)( -° ' ) - - " (45)
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VII. SUGARY

A plan of successive approximations for handling the equations O? the
three-dimnelonal elasticity problem for cylindrical shells with region@
of rapidly varying thickness is proposed along the conceptual lines of
0. OGbner. It is shown that for a restricted but useful class of loadings,
the utilization of plane biharmonic functions can be made; thus, many of
the tools of complex variable theory can be introduced.

The argument carried out in the preceding sections points up the re-
quiremsnt for relaxing the precise loading conditions over portions of the
shell. This matter is common to all approximate theories of this type,
leading to the well-known separation of solution into the so-called
interior solutions and boundary layer effects.

Finally, although the generally more difficult three-dimensional
problem has been reduced to the determination of plane biharmonic functions,
the latter matter can provide considerable difficulties in itself.

-10-
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